Select Page

China OEM OEM Belt Conveyor Pulley High Wear Resistance Head Ceramic Drive Tail Snub Bend Take up CZPT Grooved Rubber Lagging Drum Pulley engine pulley

Product Description


Conveyor Pulley is
manufactured as per customer requirement,with main design under national standard,quality inspection focusing on shaft core,welded joint,rubber material and hardness,dynamic balance and so on for longer product life time.

Drive/Head Pulley – A conveyor pulley used for the purpose of driving a conveyor belt. Typically mounted in external bearings and driven by an external drive source.
Return/Tail Pulley – A conveyor pulley used for the purpose of redirecting a conveyor belt back to the drive pulley. Tail pulleys can utilize internal bearings or can be mounted in external bearings and are typically located at the end of the conveyor bed. Tail pulleys commonly serve the purpose of a Take-Up pulley on conveyors of shorter lengths.
Snub Pulley – A conveyor pulley used to increase belt wrap around a drive pulley, typically for the purpose of improving traction.
Take-Up Pulley – A conveyor pulley used to remove slack and provide tension to a conveyor belt. Take-Up pulleys are more common to conveyors of longer lengths.
Bend Pulley – A conveyor pulley used to redirect the belt and provide belt tension where bends occur in the conveyor system.

The specification of pulley:
Drive Drum: is the main component of power transmission. The drum can be divided into single drum (the angle of the belt to the drum is 210 ° ~ 230 °) , Double Drum (the angle of the belt to the drum is up to 350 °) and
multi-drum (used for high power) . 
Bend Drum: is used for changing the running direction of the conveyor belt or increasing the surrounding angle of the conveyor belt on the driving roller, and the roller adopts a smooth rubber surface . The drum shaft shall be forgings and shall be nondestructive tested and the inspection report shall be provided. 
The Various Surface of Pulley:
Conveyor pulley lagging is essential to improve conveyor belt performance, the combination of our pulley lagging can reduces belt slippage, improve tracking and extends life of belt, bearing & other components.

PLAIN LAGGING:This style of finish is suitable for any pulley in the conveyor system where watershed is not necessary. It provides additional protection against belt wear, therefore, increasing the life of the pulley.
DIAMOND GROOVE LAGGING:This is the standard pattern on all Specdrum lagged conveyor pulleys. It is primarily used for reversing conveyor drive pulleys. It is also often used to allow bi-directional pulley rotation, and the pattern allows water to be dispersed away from the belt.
HERRINGBONE LAGGING:The herringbone pattern’s grooves are in the direction of rotation, and offers superior tractive properties. Each groove allows water and other liquids to escape between the face of the drum pulley and the belt. Herringbone grooved pulleys are directional and should be applied to the conveyor in a manner in which the grooves point toward the direction of the belt travel.
CHEVRON LAGGING:Some customers specify that the points of the groove should meet – as done in Chevron styled lagging. As before with the herringbone style, this would be used on drive drum pulleys and should be fitted in the correct manner, so as to allow proper use of the pattern and water dispersion also.
CERAMIC LAGGING:The Ceramic tiles are moulded into the lagging which is then cold bonded to the drum pulley. This style of finish allows excellent traction and reduces slippage, meaning that the belt tension is lower and, therefore as a result, increases the life of the pulley.
WELD-ON STRIP LAGGING: Weld-On Strip Lagging can be applied to bi-directional pulleys, and also has a finish to allow the easy dispersion of water or any fluids between the drum pulley and the belt.

The Components of Pulley:
 

1. Drum or Shell:The drum is the portion of the pulley in direct contact with the belt. The shell is fabricated from either a rolled sheet of steel or from hollow steel tubing.
2.Diaphragm Plates: The diaphragm or end plates of a pulley are circular discs which are fabricated from thick steel plate and which are welded into the shell at each end, to strengthen the drum.The end plates are bored in their centre to accommodate the pulley Shaft and the hubs for the pulley locking elements.
3.Shaft :The shaft is designed to accommodate all the applied forces from the belt and / or the drive unit, with minimum deflection. The shaft is located and locked to the hubs of the end discs by means of a locking elements. The shaft and hence pulley shafts are often stepped.
4.Locking Elements:These are high-precision manufactured items which are fitted over the shaft and into the pulley hubs. The locking elements attach the pulley firmly to the shaft via the end plates.
5.Hubs:The hubs are fabricated and machined housings which are welded into the end plates.
6.LaggingIt is sometimes necessary or desirable to improve the friction between the conveyor belt and the pulley in order to improve the torque that can be transmitted through a drive pulley. Improved traction over a pulley also assists with the training of the belt. In such cases pulley drum surfaces are `lagged` or covered in a rubberized material.
7.Bearing: Bearings used for conveyor pulleys are generally spherical roller bearings, chosen for their radial and axial load supporting characteristics. The bearings are self-aligning relative to their raceways, which means that the bearings can be ‘misaligned’ relative to the shaft and plummer blocks, to a certain degree. In practical terms this implies that the bending of the shaft under loaded conditions as well as minor misalignment of the pulley support structure, can be accommodated by the bearing.

The Production Process of Pulley:

Our Products:

1.Different types of Laggings can meet all kinds of complex engineering requirements.
2.Advanced welding technology ensures the connection strength between Shell and End-Disk.
3.High-strength Locking Elements can satisfy torque and bending requirements.
4.T-shape End-Discs provide highest performance and reliability.
5.The standardized Bearing Assembly makes it more convenient for the end user to replace it.
6.Excellent raw material and advanced processing technology enable the shaft can withstand enough torque.
7.Low maintenance for continued operation and low total cost of ownership.
8.Scientific design process incorporating Finite Element Analysis.

Our Workshop:

 

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Material: Carbon Steel
Surface Treatment: Baking Paint
Motor Type: Frequency Control Motor
Samples:
US$ 40/Piece
1 Piece(Min.Order)

|

Order Sample

Free sample
Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

pulley

Can V pulleys be customized for specific machinery and equipment?

Yes, V pulleys can be customized to meet the specific requirements of machinery and equipment. Here’s an explanation of how V pulleys can be customized:

1. Pulley Material:

V pulleys can be customized in terms of material selection. Different materials, such as cast iron, steel, aluminum, and plastic, offer varying levels of strength, durability, and corrosion resistance. The choice of pulley material depends on factors like the application environment, load capacity, and operating conditions. Customizing the pulley material ensures compatibility and optimal performance in specific machinery and equipment.

2. Pulley Dimensions:

The dimensions of V pulleys can be customized to match the requirements of machinery and equipment. This includes the diameter, width, and groove profile of the pulley. By adjusting these dimensions, the pulley can be tailored to provide the desired speed ratio, torque transmission, and belt compatibility. Customizing the pulley dimensions ensures proper power transmission and efficient operation in specific applications.

3. Keyways and Bores:

V pulleys can be customized with keyways and bores to securely fit onto shafts or spindles of machinery and equipment. Keyways are slots on the pulley that align with corresponding key slots on the shaft, preventing slippage and ensuring a positive drive connection. Bores are customized to match the diameter and configuration of the shaft. Customizing keyways and bores allows for a precise and secure fit, eliminating any potential for misalignment or movement during operation.

4. Coatings and Finishes:

V pulleys can be customized with coatings and finishes to enhance their performance and durability. Coatings such as zinc plating or powder coating provide corrosion resistance, protecting the pulley from environmental factors. Finishes like black oxide or anodizing can improve the pulley’s aesthetics and surface hardness. Customizing coatings and finishes ensures the pulleys can withstand the specific operating conditions and extend their service life.

5. Special Features:

In some cases, V pulleys can be customized with special features to meet unique requirements. This may include adding balancing features for high-speed applications, incorporating additional mounting holes or brackets, or modifying the pulley design to accommodate specific accessories or components. Customizing pulleys with special features allows for seamless integration with specific machinery and equipment.

Customization of V pulleys is typically done in collaboration with manufacturers or suppliers who specialize in power transmission components. They can provide engineering expertise and guidance to ensure that the customized pulleys meet the specific requirements and performance expectations of the machinery and equipment.

In conclusion, V pulleys can be customized in terms of material, dimensions, keyways, bores, coatings, finishes, and special features to suit the needs of specific machinery and equipment. Customization ensures compatibility, optimal performance, and reliable power transmission in diverse applications.

pulley

Can V pulleys be integrated into conveyor systems for material handling?

Yes, V pulleys can be integrated into conveyor systems for material handling. Conveyor systems are widely used in various industries to transport materials efficiently and reliably. Here’s a detailed explanation of how V pulleys can be utilized in conveyor systems:

1. Belt Drive Mechanism:

V pulleys are commonly used as part of the belt drive mechanism in conveyor systems. The driving pulley is typically connected to a motor or an engine, while the driven pulley is connected to the conveyor belt. The rotation of the driving pulley causes the belt to move, enabling the transportation of materials along the conveyor.

2. Groove Profile:

V pulleys used in conveyor systems have a specific groove profile designed to match the shape of the V-belt used in the system. The groove angle, depth, and width are tailored to accommodate the corresponding V-belt dimensions. This ensures proper belt engagement and efficient power transmission, minimizing slippage and maximizing traction.

3. Belt Selection:

Various types of V-belts can be used in conveyor systems, depending on the specific requirements of the material handling application. Common V-belt types include classical V-belts, narrow V-belts, and cogged V-belts. The selection of the appropriate V-belt is based on factors such as load capacity, speed, environmental conditions, and the nature of the materials being conveyed.

4. Tensioning Mechanism:

V pulleys in conveyor systems are typically accompanied by a tensioning mechanism to maintain the proper tension in the belt. Tensioning devices such as idler pulleys or tensioners are used to adjust the tension and ensure optimal belt engagement with the pulleys. Proper tensioning is essential for efficient power transmission and to prevent belt slippage.

5. Pulley Diameter and Speed Ratio:

The diameter of the pulleys and the speed ratio between the driving and driven pulleys are critical considerations in conveyor system design. By selecting pulleys of different diameters, different speed ratios can be achieved, allowing for customization of the conveyor system’s speed and throughput. This flexibility enables the system to be tailored to the specific material handling requirements.

6. Belt Alignment and Tracking:

Proper alignment and tracking of the conveyor belt are essential for efficient operation and to prevent belt damage or premature wear. V pulleys are designed to facilitate belt alignment by providing a consistent and stable contact surface for the belt. Additionally, tracking devices such as aligning idlers or belt tracking systems can be incorporated to ensure the belt stays centered on the pulleys.

7. Durability and Maintenance:

V pulleys used in conveyor systems are typically made of durable materials such as steel or cast iron, which can withstand the demands of continuous operation and heavy loads. Regular maintenance, including inspection, lubrication, and occasional belt replacement, is necessary to ensure the long-term efficiency and reliability of the conveyor system.

Overall, V pulleys are an integral component of conveyor systems for material handling. Their design characteristics, combined with the use of appropriate V-belts and proper tensioning, facilitate efficient power transmission, reliable operation, and effective transport of materials in various industrial applications.

pulley

What advantages do V pulleys offer for power transmission?

V pulleys, also known as V-belt pulleys or sheaves, offer several advantages for power transmission in various applications. Here’s an explanation of the advantages provided by V pulleys:

1. High Efficiency:

V pulleys provide high efficiency in power transmission. The V-shaped groove on the pulley and the corresponding trapezoidal cross-section of the V-belt create a wedging action that enhances the grip between the pulley and the belt. This improved grip minimizes slippage and ensures efficient power transfer, resulting in higher overall system efficiency.

2. Wide Speed Range:

V pulleys offer a wide speed range capability. By using different-sized pulleys, the speed ratio between the driving source and the driven component can be adjusted. This flexibility allows for the adaptation of power transmission systems to meet specific speed requirements, enabling optimal operation in various applications.

3. Shock and Vibration Dampening:

V pulleys have inherent shock and vibration dampening properties. The elasticity of the V-belt absorbs shocks and vibrations, reducing their transmission to the driven components. This feature helps to protect the machinery and equipment from excessive wear and damage, enhancing their reliability and lifespan.

4. Compact Design:

V pulleys offer a compact design compared to other types of pulleys. The V-belt drive system requires less space, making it suitable for applications where space constraints exist. The compact design also allows for efficient power transmission in tight or confined areas.

5. Cost-Effective:

V pulleys are cost-effective compared to other power transmission systems. They are relatively simple in design and construction, making them more affordable to manufacture, install, and maintain. Additionally, V-belts have a longer service life compared to other types of belts, reducing the frequency and cost of replacement.

6. Easy Installation and Maintenance:

V pulleys are easy to install and maintain. The split design of some V pulleys allows for easy installation or replacement without the need to disassemble the entire system. Additionally, V-belts are generally easy to tension and adjust, simplifying maintenance tasks and reducing downtime.

7. Versatility:

V pulleys offer versatility in power transmission applications. They can accommodate a wide range of power requirements, making them suitable for various industries and systems. Additionally, V pulleys can transmit power over long distances without a significant loss in efficiency, allowing for flexibility in system design and layout.

These advantages make V pulleys a popular choice for power transmission in a wide range of applications. Their high efficiency, speed range capability, shock absorption, compact design, cost-effectiveness, ease of installation and maintenance, and versatility contribute to their widespread use in numerous industries and machinery.

China OEM OEM Belt Conveyor Pulley High Wear Resistance Head Ceramic Drive Tail Snub Bend Take up CZPT Grooved Rubber Lagging Drum Pulley   engine pulleyChina OEM OEM Belt Conveyor Pulley High Wear Resistance Head Ceramic Drive Tail Snub Bend Take up CZPT Grooved Rubber Lagging Drum Pulley   engine pulley
editor by CX

2024-04-19

As one of leading v pulley manufacturers, suppliers and exporters of mechanical products, We offer v pulley and many other products.

Please contact us for details.

Mail:[email protected]

Manufacturer supplier exporter of v pulley

Recent Posts